2013-08 Minimum of a set involving polynomials with integer coefficients

Let \( p \) be a prime number. Let \( S_p \) be the set of all positive integers \( n \) satisfying
\[
x^n – 1 = (x^p – x + 1) f(x) + p g(x)
\]
for some polynomials \( f \) and \( g \) with integer coefficients. Find all \( p \) for which \( p^p -1 \) is the minimum of \( S_p \).

GD Star Rating
loading...
2013-08 Minimum of a set involving polynomials with integer coefficients, 4.9 out of 5 based on 10 ratings

2 thoughts on “2013-08 Minimum of a set involving polynomials with integer coefficients

  1. Ji Oon Lee Post author

    제출된 풀이도 있고 우수한 답안도 있는데 제가 이번 주에 바쁜 일정 탓에 글을 올리지 못했습니다. 아마도 다음 주 월요일에는 풀이를 확인하실 수 있을 겁니다.

Comments are closed.