Daily Archives: October 11, 2013

Solution: 2013-16 Limit of a sequence

For real numbers \( a, b \), find the following limit.
\[
\lim_{n \to \infty} n \left( 1 – \frac{a}{n} – \frac{b \log (n+1)}{n} \right)^n.
\]

The best solution was submitted by 박민재. Congratulations!

Similar solutions are submitted by 김범수(+3), 박훈민(+3), 장경석(+3), 정성진(+3), 진우영(+3), 김홍규(+2), 박경호(+2). Thank you for your participation.

GD Star Rating
loading...

2013-17 Repeated numbers

A real sequence \( x_1, x_2, x_3, \cdots \) satisfies the relation \( x_{n+2} = x_{n+1} + x_n \) for \( n = 1, 2, 3, \cdots \). If a number \( r \) satisfies \( x_i = x_j = r \) for some \( i \) and \( j \) \( (i \neq j) \), we say that \( r \) is a repeated number in this sequence. Prove that there can be more than \( 2013 \) repeated numbers in such a sequence, but it is impossible to have infinitely many repeated numbers.

GD Star Rating
loading...