Solution of 2012-7: Product of Sine

Let X be the set of all postive real numbers c such that  \[\frac{\prod_{k=1}^{n-1} \sin\left( \frac{k \pi}{2n}\right)}{c^n} \]  converges as n goes to infinity. Find the infimum of X.

The best solution was submitted by Taeho Kim (김태호, 수리과학과 2011학번). Congratulations!

Here is his Solution of Problem 2012-7.

Alternative solutions were submitted by 서기원 (수리과학과 2009학번, +3), 박민재 (2011학번, +3), 조준영 (2012학번, +3), 이명재 (2012학번, +3), 정우석 (서강대 2011학번, +3), 천용 (전남대 의예과 2011학번 +3), 어수강 (서울대학교 석사과정, +2).

GD Star Rating
loading...

2 thoughts on “Solution of 2012-7: Product of Sine

  1. HunminPark

    막 복잡하게 recurrence inequality를 만들어 풀다가 막판에 막혀서 포기했는데, 예상외로 간단한 문제였군요;; ㅠㅠ;;

Comments are closed.