Let p be a prime number and let n be a positive integer. Let \(A=\left( \binom{i+j-2}{i-1}\right)_{1\le i\le p^n, 1\le j\le p^n} \) be a \(p^n \times p^n\) matrix. Prove that \( A^3 \equiv I \pmod p\), where I is the \(p^n \times p^n\) identity matrix.
GD Star Rating
loading...
2012-6 Matrix modulo p,
loading...
행렬에서 (mod p)는 각 원소에 적용한다는 뜻인가요?
네