Let \(n\) be a fixed positive integer and let \(p\in (0,1)\). Let \(D_n\) be the determinant of a random \(n\times n\) 0-1 matrix whose entries are independent identical random variables, each of which is 1 with the probability \(p\) and 0 with the probability \(1-p\). Find the expected value and variance of \(D_n\).
GD Star Rating
loading...
2012-21 Determinant of a random 0-1 matrix,
loading...
아직 이 문제에 대한 풀이가 제출되지 않았나요??
아니요. 제가 아직 정리를 못했습니다.