Evaluate the following limit:
\(\displaystyle \lim_{\varepsilon\to 0}\int_0^{2\varepsilon} \log\left(\frac{|\sin t-\varepsilon|}{\sin \varepsilon}\right) \frac{dt}{\sin t}\).
GD Star Rating
loading...
loading...
Evaluate the following limit:
\(\displaystyle \lim_{\varepsilon\to 0}\int_0^{2\varepsilon} \log\left(\frac{|\sin t-\varepsilon|}{\sin \varepsilon}\right) \frac{dt}{\sin t}\).
Let A=(aij) be an n×n matrix such that aij=cos(i-j)θ and θ=2π/n. Determine the rank and eigenvalues of A.
The best solution was submitted by Seong-Gu Jeong (정성구), 수리과학과 2007학번. Congratulations!
Here is his Solution of Problem 2009-21.