Let \(a_1=\sqrt{1+2}\),

\(a_2=\sqrt{1+2\sqrt{1+3}}\),

\(a_3=\sqrt{1+2\sqrt{1+3\sqrt{1+4}}}\), …,

\(a_n=\sqrt{1+2\sqrt{1+3\sqrt {\cdots \sqrt{\sqrt{\sqrt{\cdots\sqrt{1+n\sqrt{1+(n+1)}}}}}}}}\), … .

Prove that \(\displaystyle\lim_{n\to \infty} \frac{a_{n+1}-a_{n}}{a_n-a_{n-1}}=\frac12\).

**GD Star Rating**

*loading...*

2008-4 Limit (9/25), 5.0 out of 5 based on 1 rating

*Related*

jsg이번문제는 어렵네요..;