Evaluate the following sum
\(\displaystyle\sum_{m=1}^\infty \sum_{\substack{n\ge 1\\ (m,n)=1}} \frac{x^{m-1}y^{n-1}}{1-x^m y^n}\)
when |x|, |y|<1.
(We write (m,n) to denote the g.c.d of m and n.)
GD Star Rating
loading...
loading...
Evaluate the following sum
\(\displaystyle\sum_{m=1}^\infty \sum_{\substack{n\ge 1\\ (m,n)=1}} \frac{x^{m-1}y^{n-1}}{1-x^m y^n}\)
when |x|, |y|<1.
(We write (m,n) to denote the g.c.d of m and n.)
What is the value of the following infinite series?
\(\displaystyle\sum_{n=2}^\infty \sum_{m=1}^{n-1} \frac{(-1)^n}{mn}\)
Prove that if x is a real number such that \(0<x\le \frac12\), then x can be represented as an infinite sum
where each \(n_k\) is an integer such that \(\frac{n_{k+1}}{n_k}\in \{3,4,5,6,8,9\}\).
x가 \(0<x\le \frac12\)을 만족하는 실수일때, x는 아래와 같은 무한급수로 표현할 수 있음을 보여라.
여기서 각 \(n_k\)는 정수이며 \(\frac{n_{k+1}}{n_k}\in \{3,4,5,6,8,9\}\)을 만족한다.