Let \(A\) be an unbounded subset of the set \(\mathbb R\) of the real numbers. Let \(T\) be the set of all real numbers \(t\) such that \(\{tx-\lfloor tx\rfloor : x\in A\}\) is dense in \([0,1]\). Is \(T\) dense in \(\mathbb R\)?
loading...
Let \(A\) be an unbounded subset of the set \(\mathbb R\) of the real numbers. Let \(T\) be the set of all real numbers \(t\) such that \(\{tx-\lfloor tx\rfloor : x\in A\}\) is dense in \([0,1]\). Is \(T\) dense in \(\mathbb R\)?
Let \(\mathbb{R}\) be the set of real numbers and let \(\mathbb{N}\) be the set of positive integers. Does there exist a function \(f:\mathbb{R}^3\to \mathbb{N}\) such that f(x,y,z)=f(y,z,w) implies x=y=z=w?
Let A be a 0-1 square matrix. If all eigenvalues of A are real positive, then those eigenvalues are all equal to 1.
Find all real solutions of \(3^x + 5^{x^2} = 4^x + 4^{x^2}\).
Prove that if x is a real number such that \(0<x\le \frac12\), then x can be represented as an infinite sum
where each \(n_k\) is an integer such that \(\frac{n_{k+1}}{n_k}\in \{3,4,5,6,8,9\}\).
x가 \(0<x\le \frac12\)을 만족하는 실수일때, x는 아래와 같은 무한급수로 표현할 수 있음을 보여라.
여기서 각 \(n_k\)는 정수이며 \(\frac{n_{k+1}}{n_k}\in \{3,4,5,6,8,9\}\)을 만족한다.