Tag Archives: rational

2012-18 Diagonal

Let \(r_1,r_2,r_3,\ldots\) be a sequence of all rational numbers in \( (0,1) \) except finitely many numbers. Let \(r_j=0.a_{j,1}a_{j,2}a_{j,3}\cdots\) be a decimal representation of \(r_j\). (For instance, if \(r_1=\frac{1}{3}=0.333333\cdots\), then \(a_{1,k}=3\) for any \(k\).)

Prove that the number \(0.a_{1,1}a_{2,2}a_{3,3}a_{4,4}\cdots\) given by the main diagonal cannot be a rational number.

GD Star Rating
loading...

2009-9 min or max

Suppose that * is an associative and commutative binary operation on the set of rational numbers such that 

  1. 0*0=0
  2. (a+c)*(b+c)=(a*b)+c for all rational numbers a,b,c.

Prove that either

  1. a*b=max(a,b) for all rational numbers a,b, or
  2. a*b=min(a,b) for all rational number a,b.
GD Star Rating
loading...

2008-11 Sum of square roots

Let a, b, c, d be positive rational numbers. Prove that if \(\sqrt a+\sqrt b+\sqrt c+\sqrt d\) is rational, then each of \(\sqrt a\), \(\sqrt b\), \(\sqrt c\), and \(\sqrt d\) is rational.

GD Star Rating
loading...