For a nonnegative real number x, let fn(x)=∏n−1k=1((x+k)(x+k+1))(n!)2 for a positive integer n. Determine lim.
GD Star Rating
loading...
loading...
For a nonnegative real number x, let fn(x)=∏n−1k=1((x+k)(x+k+1))(n!)2 for a positive integer n. Determine lim.
For integer n \geq 1 , define
a_n = \sum_{k=0}^{\infty} \frac{k^n}{k!}, \quad b_n = \sum_{k=0}^{\infty} (-1)^k \frac{k^n}{k!}.
Prove that a_n b_n is an integer.
Let a_1\le a_2\le \cdots \le a_n be integers. Prove that
is an integer.