For a nonnegative real number \(x\), let \[ f_n(x)=\frac{\prod_{k=1}^{n-1} ((x+k)(x+k+1))}{ (n!)^2}\] for a positive integer \(n\). Determine \(\lim_{n\to\infty}f_n(x)\).
GD Star Rating
loading...
loading...
For a nonnegative real number \(x\), let \[ f_n(x)=\frac{\prod_{k=1}^{n-1} ((x+k)(x+k+1))}{ (n!)^2}\] for a positive integer \(n\). Determine \(\lim_{n\to\infty}f_n(x)\).
For integer \( n \geq 1 \), define
\[
a_n = \sum_{k=0}^{\infty} \frac{k^n}{k!}, \quad b_n = \sum_{k=0}^{\infty} (-1)^k \frac{k^n}{k!}.
\]
Prove that \( a_n b_n \) is an integer.
Let \(a_1\le a_2\le \cdots \le a_n\) be integers. Prove that
is an integer.