For fixed positive numbers \( x_1, x_2, \dots, x_m \), we define a sequence \( \{ a_n \} \) by \( a_n = x_n \) for \(n \leq m \) and
\[
a_n = a_{n-1}^r + a_{n-2}^r + \dots + a_{n-k}^r
\]
for \( n > m \), where \( r \in (0, 1) \). Find \( \lim_{n \to \infty} a_n \).
loading...