Tag Archives: infinite series

2016-11 Infinite series

For a positive integer \( n \), define \( f(n) \) by
\[
f(n) =
\begin{cases}
0 & \text{ if } n \equiv 0 \pmod{5} \\
1 & \text{ if } n \equiv \pm 1 \pmod{5} \\
-1 & \text{ if } n \equiv \pm 2 \pmod{5}
\end{cases}.
\]
Compute the infinite series
\[
\sum_{n=1}^{\infty} \frac{f(n)}{n} = 1 – \frac{1}{2} – \frac{1}{3} + \frac{1}{4} + \frac{1}{6} – \dots.
\]

(This is the last problem of this semester. Thank you.)

GD Star Rating
loading...

2011-13 Sums of Partial Sums

Let a1, a2, … be a sequence of non-negative real numbers less than or equal to 1. Let \(S_n=\sum_{i=1}^n a_i\) and \(T_n=\sum_{i=1}^n S_i\). Prove or disprove that \(\sum_{n=1}^\infty a_n/T_n\) converges. (Assume a1>0.)

GD Star Rating
loading...