Let f be a differentiable function. Prove that if \(\lim_{x\to\infty} (f(x)+f'(x))=1\), then \(\lim_{x\to\infty} f(x)=1\).
GD Star Rating
loading...
loading...
Let f be a differentiable function. Prove that if \(\lim_{x\to\infty} (f(x)+f'(x))=1\), then \(\lim_{x\to\infty} f(x)=1\).
Find all real-valued continuous function f on the reals such that f(x)=f(cos x) for every real number x.
Find all real numbers \(\lambda\) and the corresponding functions \(f\) such that the equation