For a nonnegative real number \(x\), let \[ f_n(x)=\frac{\prod_{k=1}^{n-1} ((x+k)(x+k+1))}{ (n!)^2}\] for a positive integer \(n\). Determine \(\lim_{n\to\infty}f_n(x)\).
GD Star Rating
loading...
loading...
For a nonnegative real number \(x\), let \[ f_n(x)=\frac{\prod_{k=1}^{n-1} ((x+k)(x+k+1))}{ (n!)^2}\] for a positive integer \(n\). Determine \(\lim_{n\to\infty}f_n(x)\).
Let f(n) be the largest integer k such that n! is divisible by \(n^k\). Prove that \[ \lim_{n\to \infty} \frac{(\log n)\cdot \max_{2\le i\le n} f(i)}{n \log\log n}=1.\]