Determine all continuous functions \(f:(0,\infty)\to(0,\infty)\) such that \[ \int_t^{t^3} f(x) \, dx = 2\int_1^t f(x)\,dx\] for all \(t>0\).
GD Star Rating
loading...
loading...
Determine all continuous functions \(f:(0,\infty)\to(0,\infty)\) such that \[ \int_t^{t^3} f(x) \, dx = 2\int_1^t f(x)\,dx\] for all \(t>0\).
Let f(x) be a continuous function on I=[a,b], and let g(x) be a differentiable function on I. Let g(a)=0 and c≠0 a constant. Prove that if
|g(x) f(x)+c g′(x)|≤|g(x)| for all x∈I,
then g(x)=0 for all x∈I.
Let f be a continuous function on [0,1]. Prove that \[ \lim_{n\to \infty}\int_0^1 \cdots \int_0^1 f(\sqrt[n]{x_1 x_2 \cdots x_n } ) dx_1 dx_2 \cdots dx_n = f(1/e).\]