Category Archives: problem

Notice on POW 2022-05 (Problem Revision)

I hope you noticed the day this problem appeared was April fool’s day. However, we sincerely apologize to the students got confused about the problem description, and we found that many students already submitted the solution corresponding to the original problem.

Hence We revise the problem as the following:

Show that there do not exist perfect squares a, b, c such that \(a^2 + b^2 = c^2\), provided that a, b, c are nonzero integers.

You should actually provide the full valid proof i.e. the solution like ‘It is the special case of some famous theorem hence it is trivial’ will not be graded. Please resubmit your solution if you already submitted the solution for the previous version.

We accept the solution until April 11 Monday, 6PM.

GD Star Rating
loading...

2022-05 squares of perfect squares

Show that there exist perfect squares a, b, c such that \(a^2 + b^2 = c^2\).

====== REVISED (2022-04-04) ======

I hope you noticed the day this problem appeared was April fool’s day. Show instead that there do not exist perfect squares a, b, c such that \(a^2 + b^2 = c^2\), provided that a, b, c are nonzero integers.

GD Star Rating
loading...

2022-04 Cosine matrix

Prove or disprove the following: There exists a real \( 2 \times 2 \) matrix \( M \) such that
\[
\cos M =
\begin{pmatrix}
1 & 2022 \\
0 & 1
\end{pmatrix}.
\]

GD Star Rating
loading...

2022-03 Sum of vectors

For \(k,n\geq 1\), let \(v_1,\dots, v_n\) be unit vectors in \(\mathbb{R}^k\). Prove that we can always choose signs \(\varepsilon_1,\dots,\varepsilon_n\in \{-1, +1\}\) such that \(|\sum_{i=1}^{n} \varepsilon_i v_i |\leq \sqrt{n} \).

GD Star Rating
loading...

2022-02 ordering group elements 

For any positive integer \(n \geq 2\), let \(B_n\) be the group given by the following presentation\[ B_n = < \sigma_1, \ldots, \sigma_{n-1} | \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \sigma_i \sigma_j = \sigma_j \sigma_i > \]where the first relation is for \( 1 \leq i \leq n-2 \) and the second relation is for \(|i-j| \geq 2\). Show that there exists a total order < on \(B_n\) such that for any three elements \(a, b, c\in B_n\), if \(a < b\) then \(ca < cb\). 

GD Star Rating
loading...

2021-24 The squares of wins and losses

There are \(n\) people participating to a chess tournament and every two players play one game. There are no draws. Let \(a_i\) be the number of wins of the \(i\)-th player and \(b_i\) be the number of losses of the \(i\)-th player. Prove that
\[\sum_{i\in [n]} a_i^2 = \sum_{i\in [n]} b_i^2.\]

GD Star Rating
loading...

Notice on 2021-21

The problem on 2021-21 was written in an ambiguous way, which led the contestants to misunderstand the problem. The problem is updated to be more clear, and anyone is again welcome to submit a solution for the problem.

GD Star Rating
loading...

2021-22 Sum of fractions

Determine all rational numbers that can be written as
\[
\frac{1}{n_1} + \frac{1}{n_1 n_2} + \frac{1}{n_1 n_2 n_3} + \dots + \frac{1}{n_1 n_2 n_3 \dots n_k} ,
\]
where \( n_1, n_2, n_3 \dots, n_k \) are positive integers greater than \(1\).

GD Star Rating
loading...