Find all integers \( n \) such that \( n^4 + n^3 + n^2 + n + 1 \) is a perfect square.
loading...
Find all integers \( n \) such that \( n^4 + n^3 + n^2 + n + 1 \) is a perfect square.
Determine the minimum number of hyperplanes in \(\mathbb{R}^n\) that do not contain the origin but they together cover all points in \(\{0,1\}^n\) except the origin.
Let \(f(x)\) be a degree 100 real polynomial. What is the largest possible number of negative coefficients of \((f(x))^4\)?
Suppose \( a_1, a_2, \dots, a_{2023} \) are real numbers such that
\[
a_1^3 + a_2^3 + \dots + a_n^3 = (a_1 + a_2 + \dots + a_n)^2
\]
for any \( n = 1, 2, \dots, 2023 \). Prove or disprove that \( a_n \) is an integer for any \( n = 1, 2, \dots, 2023 \).
There are light bulbs \(\ell_1,\dots, \ell_n\) controlled by the switches \(s_1, \dots, s_n\). The \(i\)th switch flips the status of the \(i\)th light and possibly others as well. If \(s_i\) flips the status of \(\ell_j\), then \(s_j\) flips the status of \(\ell_i\). All lights are initially off. Prove that it is possible to turn all the lights on.
Let \(A\) be an 8 by 8 integral unimodular matrix. Moreover, assume that for each \( x \in \mathbb{Z}^8 \), we have \(x^{\top} A x \) is even. What is the possible number of positive eigenvalues for \(A\)?
Define a sequence \( a_n \) by \( a_1 = 1 \) and
\[
a_{n+1} = \frac{1}{n} \left( 1 + \sum_{k=1}^n a_k^2 \right)
\]
for any \( n \geq 1 \). Prove or disprove that \( a_n \) is an integer for all \( n \geq 1 \).
Let \(\varphi(x)\) be the Euler’s totient function. Let \(S = \{a_1,\dots, a_n\}\) be a set of positive integers such that for any \(a_i\), all of its positive divisors are also in \(S\). Let \(A\) be the matrix with entries \(A_{i,j} = gcd(a_i,a_j)\) being the greatest common divisors of \(a_i\) and \(a_j\). Prove that \(\det(A) = \prod_{i=1}^{n} \varphi(a_i)\).
Let \(S\) be the set of all 4 by 4 integral positive-definite symmetric unimodular matrices. Define an equivalence relation \( \sim \) on \(S\) such that for any \( A,B \in S\), we have \(A \sim B\) if and only if \(PAP^\top = B\) for some integral unimodular matrix \(P\). Determine \(S ~/\sim \).
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function satisfying \( f(0) = 0 \) and \( 0 \leq f'(x) \leq 1 \). Prove that
\[ \left( \int_0^1 f(x) dx \right)^2 \geq \int_0^1 [f(x)]^3 dx. \]