Category Archives: problem

2023-14 Dividing polynomials

Let \(f(t)=(t^{pq}-1)(t-1) \) and \(g(t)=(t^{p}-1)(t^q-1) \) where \(p\) and \(q\) are relatively prime positive integers. Prove that \(\frac{f(t)}{g(t)}\) can be written as a polynomial where it has just \(1\) or \(-1\) as coefficients. (For example, when \(p=2\) and \(q=3\), we have that \(\frac{f(t)}{g(t)} = t^2-t+1\).)

GD Star Rating
loading...

2023-12 Pairs promoting diversity

Let \(p\) be a prime number at least three and let \(k\) be a positive integer smaller than \(p\). Given \(a_1,\dots, a_k\in \mathbb{F}_p\) and distinct elements \(b_1,\dots, b_k\in \mathbb{F}_p\), prove that there exists a permutation \(\sigma\) of \([k]\) such that the values of \(a_i + b_{\sigma(i)}\) are distinct modulo \(p\).

GD Star Rating
loading...

2023-09 Permuted sums of reciprocals

Let \(\mathbb{S}_n\) be the set of all permutations of \([n]=\{1,\dots, n\}\). For positive real numbers \(d_1,\dots, d_n\), prove \[ \sum_{\sigma\in \mathbb{S}_n} \frac{1}{ d_{\sigma(1)}(d_{\sigma(1)}+d_{\sigma(2)}) \dots (d_{\sigma(1)}+\dots + d_{\sigma(n)}) } = \frac{1}{d_1\dots d_n}.\]

GD Star Rating
loading...

2023-07 An oscillatory integral

Suppose that \( f: [a, b] \to \mathbb{R} \) is a smooth, convex function, and there exists a constant \( t>0 \) such that \( f'(x) \geq t \) for all \( x \in (a, b) \). Prove that
\[
\left| \int_a^b e^{i f(x)} dx \right| \leq \frac{2}{t}.
\]

GD Star Rating
loading...

2023-06 Golden ratio and a function

Let \(\phi = \frac{1+\sqrt{5}}{2}\). Let \(f(1)=1\) and for \(n\geq 1\), let
\[ f(n+1) = \left\{\begin{array}{ll}
f(n)+2 & \text{ if } f(f(n)-n+1)=n \\
f(n)+1 & \text{ otherwise}.
\end{array}\right.\]
Prove that \(f(n) = \lfloor \phi n \rfloor\), and determine when \(f(f(n)-n+1)\neq n\) holds.

GD Star Rating
loading...