Category Archives: problem

2024-01 Dice

Suppose that we roll \(n\) (6-sided, fair) dice. Let \(S_n\) be the sum of their faces. Find all positive integers \(k\) such that the probability that \(k\) divides \(S_n\) is \(1/k\) for all \(n \geq 1\).

GD Star Rating
loading...

2023-23 Don’t be negative!

Consider a function \(f: \{1,2,\dots, n\}\rightarrow \mathbb{R}\) satisfying the following for all \(1\leq a,b,c \leq n-2\) with \(a+b+c\leq n\).

\[ f(a+b)+f(a+c)+f(b+c) – f(a)-f(b)-f(c)-f(a+b+c) \geq 0 \text{ and } f(1)=f(n)=0.\]

Prove or disprove this: all such functions \(f\) always have only nonnegative values on its domain.

Acknowledgement: This problem arises during a research discussion between June Huh, Jaehoon Kim and Matt Larson.

GD Star Rating
loading...

2023-21 A limit

Find the following limit:

\[
\lim_{n \to \infty} \left( \frac{\sum_{k=1}^{n+2} k^k}{\sum_{k=1}^{n+1} k^k} – \frac{\sum_{k=1}^{n+1} k^k}{\sum_{k=1}^{n} k^k} \right)
\]

GD Star Rating
loading...

2023-20 A sequence with small tail

Can we find a sequence \(a_i, i=0,1,2,…\) with the following property: for each given integer \(n\geq 0\), we have \[\lim_{L\to +\infty}\sum_{i=0}^L 2^{ni} |a_i|\leq 23^{(n+11)^{10}} \quad \text{ and }\quad \lim_{L\to +\infty}\sum_{i=0}^L 2^{ni} a_i = (-1)^n ?\]

GD Star Rating
loading...

2023-18 Degrees of a graph

Find all integers \( n \geq 8 \) such that there exists a simple graph with \( n \) vertices whose degrees are as follows:

(i) \( (n-4) \) vertices of the graph are with degrees \( 4, 5, 6, \dots, n-2, n-1 \), respectively.

(ii) The other \( 4 \) vertices are with degrees \( n-2, n-2, n-1, n-1 \), respectively.

GD Star Rating
loading...

2023-17 Comparing area of triangles

Let \(f(x) = x^4 + (2-a)x^3 – (2a+1)x^2 + (a-2)x + 2a\) for some \(a \geq 2\). Draw two tangent lines of its graph at the point \((-1,0)\) and \((1,0)\) and let \(P\) be the intersection point. Denote by \(T\) the area of the triangle whose vertices are \((-1,0), (1,0)\) and \(P\). Let \(A\) be the area of domain enclosed by the interval \([-1,1]\) and the graph of the function on this interval. Show that \(T \leq 3A/2.\)

GD Star Rating
loading...

2023-15 An inequality for complex polynomials

Let \(p(z), q(z) \)and \(r(z)\) be polynomials with complex coefficients in the complex plane. Suppose that \(|p(z)| + |q(z)| \leq |r(z)|\) for every \(z\). Show that there exist two complex numbers \( a,b \) such that \(|a|^2 +|b|^2 =1\) and \( a p(z) + bq(z) =0 \) for every \(z\).
GD Star Rating
loading...