Category Archives: problem

2023-21 A limit

Find the following limit:

\[
\lim_{n \to \infty} \left( \frac{\sum_{k=1}^{n+2} k^k}{\sum_{k=1}^{n+1} k^k} – \frac{\sum_{k=1}^{n+1} k^k}{\sum_{k=1}^{n} k^k} \right)
\]

GD Star Rating
loading...

2023-20 A sequence with small tail

Can we find a sequence \(a_i, i=0,1,2,…\) with the following property: for each given integer \(n\geq 0\), we have \[\lim_{L\to +\infty}\sum_{i=0}^L 2^{ni} |a_i|\leq 23^{(n+11)^{10}} \quad \text{ and }\quad \lim_{L\to +\infty}\sum_{i=0}^L 2^{ni} a_i = (-1)^n ?\]

GD Star Rating
loading...

2023-18 Degrees of a graph

Find all integers \( n \geq 8 \) such that there exists a simple graph with \( n \) vertices whose degrees are as follows:

(i) \( (n-4) \) vertices of the graph are with degrees \( 4, 5, 6, \dots, n-2, n-1 \), respectively.

(ii) The other \( 4 \) vertices are with degrees \( n-2, n-2, n-1, n-1 \), respectively.

GD Star Rating
loading...

2023-17 Comparing area of triangles

Let \(f(x) = x^4 + (2-a)x^3 – (2a+1)x^2 + (a-2)x + 2a\) for some \(a \geq 2\). Draw two tangent lines of its graph at the point \((-1,0)\) and \((1,0)\) and let \(P\) be the intersection point. Denote by \(T\) the area of the triangle whose vertices are \((-1,0), (1,0)\) and \(P\). Let \(A\) be the area of domain enclosed by the interval \([-1,1]\) and the graph of the function on this interval. Show that \(T \leq 3A/2.\)

GD Star Rating
loading...

2023-15 An inequality for complex polynomials

Let \(p(z), q(z) \)and \(r(z)\) be polynomials with complex coefficients in the complex plane. Suppose that \(|p(z)| + |q(z)| \leq |r(z)|\) for every \(z\). Show that there exist two complex numbers \( a,b \) such that \(|a|^2 +|b|^2 =1\) and \( a p(z) + bq(z) =0 \) for every \(z\).
GD Star Rating
loading...

2023-14 Dividing polynomials

Let \(f(t)=(t^{pq}-1)(t-1) \) and \(g(t)=(t^{p}-1)(t^q-1) \) where \(p\) and \(q\) are relatively prime positive integers. Prove that \(\frac{f(t)}{g(t)}\) can be written as a polynomial where it has just \(1\) or \(-1\) as coefficients. (For example, when \(p=2\) and \(q=3\), we have that \(\frac{f(t)}{g(t)} = t^2-t+1\).)

GD Star Rating
loading...

2023-12 Pairs promoting diversity

Let \(p\) be a prime number at least three and let \(k\) be a positive integer smaller than \(p\). Given \(a_1,\dots, a_k\in \mathbb{F}_p\) and distinct elements \(b_1,\dots, b_k\in \mathbb{F}_p\), prove that there exists a permutation \(\sigma\) of \([k]\) such that the values of \(a_i + b_{\sigma(i)}\) are distinct modulo \(p\).

GD Star Rating
loading...