What is the determinant of the \(n\times n\) matrix \(A_n=(a_{ij}) \) where \[ a_{ij}=\begin{cases} 1 ,&\text{if } i=j, \\ x, &\text{if }|i-j|=1, \\ 0, &\text{otherwise,}\end{cases}\] for a real number \(x\)?
loading...
What is the determinant of the \(n\times n\) matrix \(A_n=(a_{ij}) \) where \[ a_{ij}=\begin{cases} 1 ,&\text{if } i=j, \\ x, &\text{if }|i-j|=1, \\ 0, &\text{otherwise,}\end{cases}\] for a real number \(x\)?
Let \( H \) be an \( N \times N \) positive definite matrix and \( G = H^{-1} \). Let \( H’ \) be an \( (N-1) \times (N-1) \) matrix obtained by removing the \( N \)-th row and the column of \( H \), i.e., \( H’_{ij} = H_{ij} \) for any \( i, j = 1, 2, \cdots, N-1 \). Let \( G’ = (H’)^{-1} \). Prove that
\[
G_{ij} – G’_{ij} = \frac{G_{iN} G_{Nj}}{G_{NN}}
\]
for any \( i, j = 1, 2, \cdots, N-1 \).
Evaluate the following integral for \( z \in \mathbb{C}^+ \).
\[
\frac{1}{2\pi} \int_{-2}^2 \log (z-x) \sqrt{4-x^2} dx.
\]
Does there exist an infinite sequence such that (i) every integer appears infinitely many times and (ii) the sequence is periodic modulo \(m\) for every positive integer \(m\)?
Find all positive integers \(n\) such that the following statement holds:
Let \(f:\mathbb{R}^n\to \mathbb {R}\) be a differentiable function that has a unique critical point \(c\). If \(f\) has a local maximum at \(c\), then \(f(c)\) is an absolute maximum of \(f\).
Find the minimum value of
\[
\int_{\mathbb{R}} f(x) \log f(x) dx
\]
among functions \(f: \mathbb{R} \rightarrow \mathbb{R}^+ \cup \{ 0 \}\) that satisfy the condition
\[
\int_{\mathbb{R}} f(x) dx = \int_{\mathbb{R}} x^2 f(x) dx = 1.
\]
Let \(A\) be an \(n\times n\) matrix with complex entries. Prove that if \(A^2=A^*\), then \[\operatorname{rank}(A+A^*)=\operatorname{rank}(A).\] (Here, \(A^*\) is the conjugate transpose of \(A\).)
(This is the last problem of this semester. Thank you for participating KAIST Math Problem of the Week.)
Does \(\frac{1}{n \sin n}\) converge as \(n\) goes to infinity?
Let \(w_1,w_2,\ldots,w_n\) be positive real numbers such that \( \sum_{i=1}^n w_i=1\). Prove that if \(x_1,x_2,\ldots,x_n\in [0,\pi]\), then \[ \sin \left(\prod_{i=1}^n x_i^{w_i} \right) \ge \prod_{i=1}^n (\sin x_i)^{w_i}.\]
Let \(n\ge 1\) and \(a_0,a_1,a_2,\ldots,a_{n}\) be non-negative integers. Prove that if \[ N=\frac{a_0^2+a_1^2+a_2^2+\cdots+a_{n}^2}{1+a_0a_1a_2\cdots a_{n}}\] is an integer, then \(N\) is the sum of \(n\) squares of integers.