Category Archives: problem

2016-1 Flipping signs

Prove that for every \( x_1, x_2,\ldots,x_n\in [0,1]\), there exist \(\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_n\in\{1/2,-1/2\}\) such that for all \(k=1,2,\ldots,n-1\), \[ \left\lvert \sum_{i=1}^k \varepsilon_i x_i-\sum_{i=k+1}^n \varepsilon_i x_i \right\rvert\le 1.\]

GD Star Rating
loading...

2015-24 Hölder inequality for matrices

Let \( A, B \) are \( n \times n \) Hermitian matrices and \( p, q \in [1, \infty] \) with \( \frac{1}{p} + \frac{1}{q} = 1 \). Prove that
\[
| Tr (AB) | \leq \| A \|_{S^p} \| B \|_{S^q}.
\]
(Here, \(\| A \|_{S^p} \) is the \(p\)-Schatten norm of \( A \), defined by
\[
\| A \|_{S^p} = \left( \sum_{i=1}^n |\lambda_i|^p \right)^{1/p},
\]
where \( \lambda_1, \lambda_2, \dots, \lambda_n \) are the eigenvalues of \( A \).)

GD Star Rating
loading...

2015-23 Fixed points

Let \(f:[0,1)\to[0,1)\)  be a function such that \[ f(x)=\begin{cases} 2x,&\text{if }0\le 2x\lt 1,\\ 2x-1, & \text{if } 1\le 2x\lt 2.\end{cases}\] Find all \(x\) such that \[ f(f(f(f(f(f(f(x)))))))=x.\]

GD Star Rating
loading...

2015-21 Differentiable function

Assume that a function \( f : (0, 1) \to [0, \infty) \) satisfies \( f(x) = 0 \) at all but countably many points \( x_1, x_2, \cdots \). Let \( y_n = f(x_n) \). Prove that, if \( \sum_{n=1}^{\infty} y_n < \infty \), then \( f \) is differentiable at some point.

GD Star Rating
loading...

2015-20 Dense function

Prove or disprove the following statement:

There exists a function \( f : \mathbb{R} \to \mathbb{R} \) such that

(1) \( f \equiv 0 \) almost everywhere, and

(2) for any nonempty open interval \(I\), \( f(I) = \mathbb{R} \).

GD Star Rating
loading...

2015-18 Determinant

What is the determinant of the \(n\times n\) matrix \(A_n=(a_{ij}) \) where \[ a_{ij}=\begin{cases} 1 ,&\text{if } i=j, \\ x, &\text{if }|i-j|=1, \\ 0, &\text{otherwise,}\end{cases}\] for a real number \(x\)?

GD Star Rating
loading...

2015-17 Inverse of a minor

Let \( H \) be an \( N \times N \) positive definite matrix and \( G = H^{-1} \). Let \( H’ \) be an \( (N-1) \times (N-1) \) matrix obtained by removing the \( N \)-th row and the column of \( H \), i.e., \( H’_{ij} = H_{ij} \) for any \( i, j = 1, 2, \cdots, N-1 \). Let \( G’ = (H’)^{-1} \). Prove that
\[
G_{ij} – G’_{ij} = \frac{G_{iN} G_{Nj}}{G_{NN}}
\]
for any \( i, j = 1, 2, \cdots, N-1 \).

GD Star Rating
loading...