Is it possible to arrange the numbers \(1, 2, 3, \ldots, 2024\) in a sequence such that the difference between any two adjacent numbers is greater than \(1\) but less than \(4\)?
loading...
Is it possible to arrange the numbers \(1, 2, 3, \ldots, 2024\) in a sequence such that the difference between any two adjacent numbers is greater than \(1\) but less than \(4\)?
Evaluate the following sum (with proof):
\[
\sum_{k=0}^{\infty} \frac{1}{(6k+1)(6k+2)(6k+3)(6k+4)(6k+5)(6k+6)}
\]
Let \(u_n(t)\), \(n=1,2…\) be a sequence of concave functions on \(\mathbb{R}\). Let \(g(t)\) be a differentiable function on \(\mathbb{R}\). Assume \(\liminf_{n\to\infty} u_n(t) \geq g(t)\) for every \(t\) and \(\lim_{n\to \infty} u_n(0) = g(0)\). Suppose \(u_n'(0)\) exist for \(n=1,2,…\). Compare \(\lim_{n\to \infty} u_n'(0)\) and \(g'(0)\).
Count the number of distinct matrices \( A \), where two matrices are considered identical if one can be obtained from the other by rearranging rows and columns, that have the following properties:
Find all polynomials \( P \) with real coefficients such that \( P(x) \in \mathbb{Q} \) implies \( x \in \mathbb{Q} \).
Find
\[
\sup \left[ \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \left( \sum_{i=n}^{\infty} x_i^2 \right)^{1/2} \Big/ \sum_{i=1}^{\infty} x_i \right],
\]
where the supremum is taken over all monotone decreasing sequences of positive numbers \( (x_i) \) such that \( \sum_{i=1}^{\infty} x_i < \infty \).
Find all positive numbers \(a_1,…,a_{5}\) such that \(a_1^\frac{1}{n} + \cdots + a_{5}^\frac{1}{n}\) is integer for every integer \(n\geq 1.\)
Let \(A\) be a \(16 \times 16\) matrix whose entries are either \(1\) or \(-1\). What is the maximum value of the determinant of \(A\)?
For fixed positive numbers \( x_1, x_2, \dots, x_m \), we define a sequence \( \{ a_n \} \) by \( a_n = x_n \) for \(n \leq m \) and
\[
a_n = a_{n-1}^r + a_{n-2}^r + \dots + a_{n-k}^r
\]
for \( n > m \), where \( r \in (0, 1) \). Find \( \lim_{n \to \infty} a_n \).
Let \(f_n(t)\), \(n=1,2…\) be a sequence of concave functions on \(\mathbb{R}\). Assume \(\liminf_{n\to\infty} f_n(t) \geq 2024\,t^{5}+3\) for \(t\in [-1, 1]\) and \(\lim_{n\to \infty} f_n(0) = 3\). Suppose \(f_n'(0)\) exist for \(n=1,2,…\). Compute \(\lim_{n\to \infty} f_n'(0)\).