Category Archives: problem

2017-08 Long arithmetic progression

Does there exist a constant \(\varepsilon>0\) such that for each positive integer \(n\) and each subset \(A\) of \(\{1,2,\ldots,n\}\) with \(\lvert A\rvert<\varepsilon n\), there exists an artihmetic progression \(S\) in \(\{1,2,\ldots,n\}\) such that \( S\cap A=\emptyset\) and \(\lvert S\rvert >\varepsilon n\)?

GD Star Rating
loading...

2017-04 More than a half

Prove (or disprove) that exactly one of the following is true for every subset \(A\) of \(\{ (i,j): i,j\in\{1,2,\ldots,n\}, i\neq j\}\).

(i) There exists a sequence of distinct integers \(i_1,i_2,\ldots,i_k\in \{1,2,\ldots,n\}\) for some integer \(k>1\) such that \( (i_1,i_2), (i_2,i_3),\ldots,(i_{k-1},i_k), (i_k,i_1)\in A\).

(ii) There exists a collection of finite sets \( A_1,A_2,\ldots,A_n\) such that for all distinct \(i,j\in\{1,2,\ldots,n\}\), \((i,j)\in A\) if and only if \( \lvert A_i\cap A_j\rvert > \frac12 \lvert A_i\rvert \) and \( \lvert A_i\cap A_j\rvert \le  \frac12 \lvert A_j\rvert \)

GD Star Rating
loading...

2017-02 Low-degree polynomial

Let \(a_1,a_2,\ldots,a_n\) be distinct points in \(\mathbb R^4\). Does there exist a non-zero polynomial \(P(x_1,x_2,x_3,x_4)\) such that
(1) the degree of \(P\) is at most \(\lceil\sqrt{5} n^{1/4}\rceil\) and
(2) \(P(a_i)=0\) for all \(i=1,2,\ldots,n\)?

GD Star Rating
loading...

2017-01 Eigenvalues of Hermitian matrices

Let \( A, B, C \) be \( N \times N \) Hermitian matrices with \( C = A+B \). Let \( \alpha_1 \geq \dots \geq \alpha_N \), \( \beta_1 \geq \dots \geq \beta_N \), \( \gamma_1 \geq \dots \geq \gamma_N \) be the eigenvalues of \( A, B, C \), respectively. For any \( 1 \leq k \leq N \), prove that
\[ \gamma_1 + \gamma_2 + \dots + \gamma_k \leq (\alpha_1 + \alpha_2 + \dots + \alpha_k) + (\beta_1 + \beta_2 + \dots + \beta_k) \]

GD Star Rating
loading...

2016-23 Inequality on complex numbers

Suppose that \( z_1, z_2, \dots, z_n \) are complex numbers satisfying \( \sum_{k=1}^n z_k = 0 \). Prove that
\[
\sum_{k=1}^n |z_{k+1} – z_k|^2 \geq 4 \sin^2 \left( \frac{\pi}{n} \right) \sum_{k=1}^n |z_k|^2,
\]
where we let \( z_{n+1} = z_1 \).

GD Star Rating
loading...