Find the minimum \(m\) (if it exists) such that every convex function \(f:[-1,1]\to[-1,1]\) has a constant \(c\) such that \[ \int_{-1}^1 \lvert f(x)-c\rvert \,dx \le m.\]
Category Archives: problem
2018-15 Diophantine equation
Let \( n \) be a positive integer. Suppose that \( a_1, a_2, \dots, a_n \) are non-zero integers and \( b_1, b_2, \dots, b_n\) are positive integers such that \( (b_i, b_n) = 1 \) for \( i = 1, 2, \dots, n-1 \). Prove that the Diophantine equation
\[
a_1 x_1^{b_1} + a_2 x_2^{b_2} + \dots + a_n x_n^{b_n} = 0
\]
has infinitely many integer solutions \( (x_1, x_2, \dots, x_n) \).
2018-14 Forests and Planes
Suppose that the edges of a graph \(G\) can be colored by 3 colors so that there is no monochromatic cycle. Prove or disprove that \(G\) has two planar subgraphs \(G_1,G_2\) such that \(E(G)=E(G_1)\cup E(G_2)\).
2018-13 Bernoulli vectors
Assume that \( x \in \mathbb{R}^n \) with at least \( k \) non-zero entries \( ( k> 0 ) \). Let
\[
A = \{ y \in \{-1, 1\}^n : y \cdot x = 0 \}.
\]
Prove that \( |A| \leq k^{-1/2} 2^n \).
2018-12 Property of Eigenvectors
Let \(A\) be a \(2\times 2\) matrix. Prove that if \(Av_1=\lambda_1v_1\) and \(Av_2=\lambda_2v_2\) for distinct reals \(\lambda_1\) and \(\lambda_2\) and nonzero vectors \(v_1\) and \(v_2\), then both columns of \(A-\lambda_1 I\) is a multiple of \(v_2\).
2018-11 Fallacy
On a math exam, there was a question that asked for the largest angle of the triangle with sidelengths \(21\), \(41\), and \(50\). A student obtained the correct answer as follows:
Let \(x\) be the largest angle. Then,
\[
\sin x = \frac{50}{41} = 1 + \frac{9}{41}.
\]
Since \( \sin 90^{\circ} = 1 \) and \( \sin 12^{\circ} 40′ 49” = 9/41 \), the angle \( x = 90^{\circ} + 12^{\circ} 40′ 49” = 102^{\circ} 40′ 49”\).
Find the triangle with the smallest area with integer sidelengths and possessing this property (that the wrong argument as above gives the correct answer).
2018-10 Probability of making an acute triangle
Given a stick of length 1, we choose two points at random and break it into three pieces. Compute the probability that these three pieces form an acute triangle.
2018-09 Sum of digits
For a positive integer \( n \), let \( S(n) \) be the sum of all decimal digits in \( n \), i.e., if \( n = n_1 n_2 \dots n_m \) is the decimal expansion of \( n \), then \( S(n) = n_1 + n_2 + \dots + n_m \). Find all positive integers \( n \) and \( r \) such that \( (S(n))^r = S(n^r) \).
2018-08 Large LCM
Let \(a_1\), \(a_2\), \(\ldots\), \(a_m\) be distinct positive integers. Prove that if \(m>2\sqrt{N}\), then there exist \(i\), \(j\) such that the least common multiple of \(a_i\) and \(a_j\) is greater than \(N\).
2018-07 A tridiagonal matrix
Let \( S \) be an \( (n+1) \times (n+1) \) matrix defined by
\[
S_{ij} = \begin{cases}
(n+1)-i & \text{ if } j=i+1, \\
i-1 & \text{ if } j=i-1, \\
0 & \text{ otherwise. }
\end{cases}
\]
Find all eigenvalues of \( S \).
