Category Archives: problem

2020-15 The number of cycles of fixed lengths in random permutations (modified)

Let \( m_0=n \). For each \( i\geq 0 \), choose a number \( x_i \) in \( \{1,\dots, m_i\} \) uniformly at random and let \( m_{i+1}= m_i – x_i\). This gives a random vector \( \mathbf{x}=(x_1,x_2, \dots) \). For each \( 1\leq k\leq n\), let \( X_k \) be the number of occurrences of \( k \) in the vector \( \mathbf{x} \).

For each \(1\leq k\leq n\), let \(Y_k\) be the number of cycles of length \(k\) in a permutation of \( \{1,\dots, n\} \) chosen uniformly at random. Prove that \( X_k \) and \(Y_k\) have the same distribution.

GD Star Rating
loading...

2020-14 Connecting dots probabilistically

Say there are n points. For each pair of points, we add an edge with probability 1/3. Let \(P_n\) be the probability of the resulting graph to be connected (meaning any two vertices can be joined by an edge path). What can you say about the limit of \(P_n\) as n tends to infinity?

GD Star Rating
loading...

2020-13 An integral sequence

Let \( a_n \) be a sequence defined recursively by \( a_0 = a_1 = \dots = a_5 = 1 \) and
\[
a_n = \frac{a_{n-1} a_{n-5} + a_{n-2} a_{n-4} + a_{n-3}^2}{a_{n-6}}
\]
for \( n \geq 6 \). Prove or disprove that every \( a_n \) is an integer.

GD Star Rating
loading...

2020-12 Draws on a chess tournament

There are \(n\) people participating to a chess tournament and every two players play exactly one game against each other. The winner receives \(1\) point and the loser gets \(0\) point and if the game is a draw, each player receives \(0.5\) points. Prove that if at least \(3/4\) of the games are draws, then there are two players with the same total scores.

GD Star Rating
loading...

2020-09 Displacement of permutations

For a permutation \(\pi: [n]\rightarrow [n]\), we define the displacement of \(\pi\) to be \(\sum_{i\in [n]} |i-\pi(i)|\).
For given \(k\), prove that the number of even permutations of \([n]\) with displacement \(2k\) minus the number of odd permutations of \([n]\) with displacement \(2k\) is \((-1)^{k}\binom{n-1}{k}\).

GD Star Rating
loading...

2020-08 Geometric action revisited

In the problem 2019-08 (https://mathsci.kaist.ac.kr/pow/2019/2019-08-group-action/), we considered a group G acting by isometries on a proper geodesic metric space X properly discontinuously and cocompactly. Such an action is called a geometric action. The conclusion was that a geometric action leads to that G is finitely generated.

Would this conclusion still hold in the case the space X is not necessarily proper?

GD Star Rating
loading...

2020-06 A binary maze

A binary maze consists of \(n\) separate rooms. Each room has a teleportation machine but no doors. The numbers \( a_{i,j}\in [n] \) are given for all \( (i,j)\in [n]\times \{0,1\} \). If you shout a number \( j\in \{0,1\} \) while you are in the room \( i \), then the teleportation machine will teleport you to the room \(a_{i,j}\).

You don’t know the numbers \(a_{i,j}\), but it is given that for any \(i\neq i’ \), there exists a way to reach room \( i’ \) from room \( i \) by shouting numbers \( 0 \) and \( 1 \) in some order.

At the beginning, your enemy will teleport you into one of the rooms while your eyes are closed. Your goal is to visit all rooms at least once with your eyes closed. As your eyes are closed, you don’t know which rooms you have visited before and you don’t know which room you are currently at.

So, you decide to pick a sequence \( b=(b_1,\dots, b_s) \in \{0,1\}^s \) before entering the binary maze and decide to shout the numbers \( b_1,\dots, b_s \) in order. Find a lower bound \( \ell(n) \) and an upper bound \( u(n) \) on the minimum length of a sequence which guarantees that you can visit all \( n \) rooms. If your \( \frac{u(n)}{\ell(n)} \) is smaller than some polynomial of \( n \) for all \( n\in\mathbb{N} \) , then you will get full points.

GD Star Rating
loading...