Category Archives: problem

2025-05 Commutativity and the matrix exponential

Let \( X \in \mathbb{R}^{n \times n} \) be a symmetric matrix with eigenvalues \( \lambda_i \) and orthonormal eigenvectors \( u_i \). The spectral decomposition gives \( X = \sum_{i=1}^n \lambda_i u_i u_i^\top \). For a function \( f : \mathbb{R} \to \mathbb{R} \), define \( f(X) := \sum_{i=1}^n f(\lambda_i) u_i u_i^\top \). Let \( X, Y \in \mathbb{R}^{n \times n} \) be symmetric. Is it always true that \( e^{X+Y} = e^X e^Y \)? If not, under what conditions does the equality hold?

GD Star Rating
loading...

2025-04 Multivariate polynomials

We write \(tx = (tx_0,…,tx_5)\) for \(x=(x_0,…,x_5)\in \mathbb{R^{6}}\) and \(t\in \mathbb{R}\). Find all real multivariate polynomials \(P(x)\) in \(x\) satisfying the following properties:
(a) \(P(tx) = t^d P(x)\) for all \(t\in \mathbb{R}\) and \(x\in \mathbb{R}^{6}\), where \(0\leq d \leq 15\) is an integer;
(b) \(P(x) =0\) if \(x_i = x_j\) with \(i\neq j\).

GD Star Rating
loading...

2025-03 Distinct sums under shifts

Consider any sequence \( a_1,\dots, a_n \) of non-negative integers in \(\{0,1,\dots, m\}\). Prove that \[|\{ a_i+ a_j + (j-i): 1\leq i < j \leq n \}|\geq m \] when \(m= \lfloor \frac{1}{4} n^{2/3} \rfloor \).

A bonus problem: Can you find a function \(f(n)=\omega(n^{2/3})\) such that the above statement is true when \(m = f(n) \)? Is there such a function with \(f(n)= \Omega(n)\)? (You would still get full points without answering the bonus question.)

GD Star Rating
loading...

2024-19 Stationary function

Let \(g(t): [0,+\infty) \to [0,+\infty)\) be a decreasing continuous function. Assume \(g(0)=1\), and for every \(s, t \geq 0 \) \[t^{11}g(s+t) \leq 2024 \; [g(s)]^2.\] Show that \(g(11) = g(12)\).

GD Star Rating
loading...