Category Archives: problem

2025-04 Multivariate polynomials

We write \(tx = (tx_0,…,tx_5)\) for \(x=(x_0,…,x_5)\in \mathbb{R^{6}}\) and \(t\in \mathbb{R}\). Find all real multivariate polynomials \(P(x)\) in \(x\) satisfying the following properties:
(a) \(P(tx) = t^d P(x)\) for all \(t\in \mathbb{R}\) and \(x\in \mathbb{R}^{6}\), where \(0\leq d \leq 15\) is an integer;
(b) \(P(x) =0\) if \(x_i = x_j\) with \(i\neq j\).

GD Star Rating
loading...

2025-03 Distinct sums under shifts

Consider any sequence \( a_1,\dots, a_n \) of non-negative integers in \(\{0,1,\dots, m\}\). Prove that \[|\{ a_i+ a_j + (j-i): 1\leq i < j \leq n \}|\geq m \] when \(m= \lfloor \frac{1}{4} n^{2/3} \rfloor \).

A bonus problem: Can you find a function \(f(n)=\omega(n^{2/3})\) such that the above statement is true when \(m = f(n) \)? Is there such a function with \(f(n)= \Omega(n)\)? (You would still get full points without answering the bonus question.)

GD Star Rating
loading...

2024-19 Stationary function

Let \(g(t): [0,+\infty) \to [0,+\infty)\) be a decreasing continuous function. Assume \(g(0)=1\), and for every \(s, t \geq 0 \) \[t^{11}g(s+t) \leq 2024 \; [g(s)]^2.\] Show that \(g(11) = g(12)\).

GD Star Rating
loading...

2024-16 Stay positive!

Let \(A= [a_{ij}]_{1\leq i,j\leq 5}\) be a \(5\times 5\) positive definite (real) matrix. Show that the matrix \([a_{ij}/(i+j)]\) is also positive definite.

GD Star Rating
loading...