Prove the following identity:
\[
\sum_{k=0}^{n-1} \binom{z}{k} \frac{x^{n-k}}{n-k} = \sum_{k=1}^n \binom{z-k}{n-k} \frac{(x+1)^k -1}{k}.
\]
2025-17 Combinatorial identity
Leave a reply
Prove the following identity:
\[
\sum_{k=0}^{n-1} \binom{z}{k} \frac{x^{n-k}}{n-k} = \sum_{k=1}^n \binom{z-k}{n-k} \frac{(x+1)^k -1}{k}.
\]
You must be logged in to post a comment.