2024-05 Knotennullstelle

A complex number \(z \in S^1 \smallsetminus \{1\} \) is called a Knotennullstelle if there exists a Laurent polynomial \(p(t) \in \mathbb{Z} [t,t^{-1}]\) such that \(p(1) =\pm 1\) and \(p(z)=0\). Prove that the collection of all Knotennullstelle numbers is a discrete subset of \(\mathbb{C}\).

GD Star Rating
loading...