Prove the following: There exists a bounded real random variable \( Z \) such that
\[
E[Z] = 0, E[Z^2] = 1, E[Z^3] = x, E[Z^4] = y
\]
if and only if \( y \geq x^2 + 1 \). (Here, \( E \) denotes the expectation.)
GD Star Rating
loading...
loading...