Let \(S\) be the set of all 4 by 4 integral positive-definite symmetric unimodular matrices. Define an equivalence relation \( \sim \) on \(S\) such that for any \( A,B \in S\), we have \(A \sim B\) if and only if \(PAP^\top = B\) for some integral unimodular matrix \(P\). Determine \(S ~/\sim \).
GD Star Rating
loading...
loading...