Prove for any \( x \geq 1 \) that
\[
\left( \sum_{n=0}^{\infty} (n+x)^{-2} \right)^2 \geq 2 \sum_{n=0}^{\infty} (n+x)^{-3}.
\]
GD Star Rating
loading...
loading...
Prove for any \( x \geq 1 \) that
\[
\left( \sum_{n=0}^{\infty} (n+x)^{-2} \right)^2 \geq 2 \sum_{n=0}^{\infty} (n+x)^{-3}.
\]