2022-09 A chaotic election

Let \(A_1,\dots, A_k\) be presidential candidates in a country with \(n \geq 1\) voters with \(k\geq 2\). Candidates themselves are not voters. Each voter has her/his own preference on those \(k\) candidates.

Find maximum \(m\) such that the following scenario is possible where \(A_{k+1}\) indicates the candidate \(A_1\): for each \(i\in [k]\), there are at least \(m\) voters who prefers \(A_i\) to \(A_{i+1}\).

GD Star Rating
loading...