2022-02 ordering group elements 

For any positive integer \(n \geq 2\), let \(B_n\) be the group given by the following presentation\[ B_n = < \sigma_1, \ldots, \sigma_{n-1} | \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \sigma_i \sigma_j = \sigma_j \sigma_i > \]where the first relation is for \( 1 \leq i \leq n-2 \) and the second relation is for \(|i-j| \geq 2\). Show that there exists a total order < on \(B_n\) such that for any three elements \(a, b, c\in B_n\), if \(a < b\) then \(ca < cb\). 

GD Star Rating
loading...
This entry was posted in problem on by .

About Hyungryul

2003.3-2009.8 KAIST, Undergraduate student in Mathematics 2009.8-2014.8 Cornell University, PhD student in Mathematics 2014.9-2017.2 University of Bonn, Postdoc 2017.3-2021.2. KAIST, Assistant Professor 2021.3-Present. KAIST, Associate Professor