Let \(A\) be an 8 by 8 integral unimodular matrix. Moreover, assume that for each \( x \in \mathbb{Z}^8 \), we have \(x^{\top} A x \) is even. What is the possible number of positive eigenvalues for \(A\)?
GD Star Rating
loading...
loading...
Let \(A\) be an 8 by 8 integral unimodular matrix. Moreover, assume that for each \( x \in \mathbb{Z}^8 \), we have \(x^{\top} A x \) is even. What is the possible number of positive eigenvalues for \(A\)?