Let \( f: [0, 1] \to \mathbb{R} \) be a continuous function satisfying
\[
\int_x^1 f(t) dt \geq \int_x^1 t\, dt
\]
for all \( x \in [0, 1] \). Prove that
\[
\int_0^1 [f(t)]^2 dt \geq \int_0^1 t f(t) dt.
\]
GD Star Rating
loading...
loading...