For an n×n matrix M with real eigenvalues, let λ(M) be the largest eigenvalue of M. Prove that for any positive integer r and positive semidefinite matrices A,B,
[λ(AmBm)]1/m≤[λ(Am+1Bm+1)]1/(m+1).
GD Star Rating
loading...
loading...
For an n×n matrix M with real eigenvalues, let λ(M) be the largest eigenvalue of M. Prove that for any positive integer r and positive semidefinite matrices A,B,
[λ(AmBm)]1/m≤[λ(Am+1Bm+1)]1/(m+1).