2019-22 Prime divisors of polynomial iterates

Let \(f = X^n + a_{n-1}X^{n-1} + \dots + a_0\in \mathbb{Z}[X]\) be a polynomial with integer coefficients, and let \(m\in \mathbb{Z}\).

Consider the sequence \[f_0,f_1,f_2,\dots \]

where \(f_0:=m\), and \(f_i:=f(f_{i-1})\) for all \(i\ge 1\).

Let \(S:=\{p\in \mathbb{P}: p \text{ divides } f_i \text{ for some } i\ge 0\}\) be the set of prime divisors of the sequence \(f_0,f_1,f_2,\dots\). 

Assume that \(S\) is finite, but \(\{f_i\mid i\ge 0\}\) is infinite. Show that \(f=X^n\). 

GD Star Rating
loading...
2019-22 Prime divisors of polynomial iterates, 4.4 out of 5 based on 8 ratings
This entry was posted in problem on by .

About Hyungryul

2003.3-2009.8 KAIST, Undergraduate student in Mathematics 2009.8-2014.8 Cornell University, PhD student in Mathematics 2014.9-2017.2 University of Bonn, Postdoc 2017.3-2021.2. KAIST, Assistant Professor 2021.3-Present. KAIST, Associate Professor