Let \(f:\mathbb R\to\mathbb R\) be a function such that \[ -1\le f(x+y)-f(x)-f(y)\le 1\] for all reals \(x\), \(y\). Does there exist a constant \(c\) such that \( \lvert f(x)-cx\rvert \le 1\) for all reals \(x\)?
GD Star Rating
loading...
loading...