Let
\[
f(x) = 1 + \left( \frac{1}{2} \cdot x \right)^2 + \left( \frac{1}{2} \cdot \frac{3}{4} \cdot x^2 \right)^2 + \left( \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot x^3 \right)^2 + \dots
\]
Prove that
\[
(\sin x) f(\sin x) f'(\cos x) + (\cos x) f(\cos x) f'(\sin x) = \frac{2}{\pi \sin x \cos x}.
\]
GD Star Rating
loading...
loading...