Let \(A\), \(B\) be matrices over the reals with \(n\) rows. Let \(M=\begin{pmatrix}A &B\end{pmatrix}\). Prove that \[ \det(M^TM)\le \det(A^TA)\det(B^TB).\]
GD Star Rating
loading...
loading...
Let \(A\), \(B\) be matrices over the reals with \(n\) rows. Let \(M=\begin{pmatrix}A &B\end{pmatrix}\). Prove that \[ \det(M^TM)\le \det(A^TA)\det(B^TB).\]