Daily Archives: June 3, 2016

Solution: 2016-11 Infinite series

For a positive integer \( n \), define \( f(n) \) by
\[
f(n) =
\begin{cases}
0 & \text{ if } n \equiv 0 \pmod{5} \\
1 & \text{ if } n \equiv \pm 1 \pmod{5} \\
-1 & \text{ if } n \equiv \pm 2 \pmod{5}
\end{cases}.
\]
Compute the infinite series
\[
\sum_{n=1}^{\infty} \frac{f(n)}{n} = 1 – \frac{1}{2} – \frac{1}{3} + \frac{1}{4} + \frac{1}{6} – \dots.
\]

The best solution was submitted by Kook, Yun Bum (국윤범, 수리과학과 2015학번). Congratulations!

Here is his solution of problem 2016-11.

Alternative solutions were submitted by 이상민 (수리과학과 2014학번, +3), 박정우 (한국과학영재학교 2016학번, +2), 윤준기 (전기및전자공학부 2014학번, +2), 최백규 (2016학번, +2).

GD Star Rating
loading...