Prove that for every x1,x2,…,xn∈[0,1], there exist ε1,ε2,…,εn∈{1/2,−1/2} such that for all k=1,2,…,n−1, |k∑i=1εixi−n∑i=k+1εixi|≤1.
GD Star Rating
loading...
loading...
Prove that for every x1,x2,…,xn∈[0,1], there exist ε1,ε2,…,εn∈{1/2,−1/2} such that for all k=1,2,…,n−1, |k∑i=1εixi−n∑i=k+1εixi|≤1.