Prove or disprove the following statement:
There exists a function \( f : \mathbb{R} \to \mathbb{R} \) such that
(1) \( f \equiv 0 \) almost everywhere, and
(2) for any nonempty open interval \(I\), \( f(I) = \mathbb{R} \).
GD Star Rating
loading...
2015-20 Dense function,
loading...
Pingback: My Solution of Kaist POW 2015-20 | Jeno Varga's Room