Prove or disprove that \[ \sum_{i=0}^r (-1)^i \binom{i+k}{k} \binom{n}{r-i} = \binom{n-k-1}{r}\] if \(k, r\) are non-negative integers and \(0\le r\le n-k-1\).
GD Star Rating
loading...
loading...
Prove or disprove that \[ \sum_{i=0}^r (-1)^i \binom{i+k}{k} \binom{n}{r-i} = \binom{n-k-1}{r}\] if \(k, r\) are non-negative integers and \(0\le r\le n-k-1\).