Let \(\{a_n\}\) be a sequence of non-negative reals such that \( \lim_{n\to \infty} a_n \sum_{i=1}^n a_i^5=1\). Prove that \[ \lim_{n\to \infty} a_n (6n)^{1/6} = 1.\]
GD Star Rating
loading...
loading...
Let \(\{a_n\}\) be a sequence of non-negative reals such that \( \lim_{n\to \infty} a_n \sum_{i=1}^n a_i^5=1\). Prove that \[ \lim_{n\to \infty} a_n (6n)^{1/6} = 1.\]