2012-9 Rank of a matrix

Let M be an n⨉n matrix over the reals. Prove that \(\operatorname{rank} M=\operatorname{rank} M^2\) if and only if \(\lim_{\lambda\to 0}  (M+\lambda I)^{-1}M\) exists.

GD Star Rating
loading...
2012-9 Rank of a matrix, 4.6 out of 5 based on 12 ratings