Daily Archives: November 9, 2012

Solution: 2012-20 the Inverse of an Upper Triangular Matrix

Let \(A=(a_{ij})\) be an \(n\times n\) upper triangular matrix such that \[a_{ij}=\binom{n-i+1}{j-i}\] for all \(i\le j\). Find the inverse matrix of \(A\).

The best solution was submitted by Minjae Park (박민재), 2011학번. Congratulations!

Here is his Solution of Problem 2012-20.

Alternative solutions were submitted by 서기원 (수리과학과 2009학번, +3), 이명재 (2012학번, +3), 김태호 (수리과학과 2011학번, +3), 임현진 (물리학과 2010학번, +3), 박훈민 (대전과학고 2학년, +3), 윤성철 (홍익대학교 수학교육학과 2009학번, +3), 어수강 (서울대학교 수리과학부 석사과정, +3).

GD Star Rating
loading...

2012-21 Determinant of a random 0-1 matrix

Let \(n\) be a fixed positive integer and let \(p\in (0,1)\). Let \(D_n\) be the determinant of a random \(n\times n\) 0-1 matrix whose entries are independent identical random variables, each of which is 1 with the probability \(p\) and 0 with the probability \(1-p\).  Find the expected value and variance of \(D_n\).

GD Star Rating
loading...