Prove that there is a constant c>1 such that if \(n>c^k\) for positive integers n and k, then the number of distinct prime factors of \(n \choose k\) is at least k.
GD Star Rating
loading...
loading...
Prove that there is a constant c>1 such that if \(n>c^k\) for positive integers n and k, then the number of distinct prime factors of \(n \choose k\) is at least k.