Prove that \(\displaystyle \sum_{m=0}^n \sum_{i=0}^m \binom{n}{m} \binom{m}{i}^3=\sum_{m=0}^n \binom{2m}{m} \binom{n}{m}^2\).
GD Star Rating
loading...
2010-6 Identity on Binomial Coefficients,
loading...
Prove that \(\displaystyle \sum_{m=0}^n \sum_{i=0}^m \binom{n}{m} \binom{m}{i}^3=\sum_{m=0}^n \binom{2m}{m} \binom{n}{m}^2\).
어렵네
조합적증명입니다.
http://b0ngs.egloos.com/2901980