Let n be a positive integer. Prove that
\(\displaystyle \sum_{k=0}^n (-1)^k \binom{2n+2k}{n+k} \binom{n+k}{2k}=(-4)^n\).
GD Star Rating
loading...
2010-14 Combinatorial Identity,
loading...
Let n be a positive integer. Prove that
\(\displaystyle \sum_{k=0}^n (-1)^k \binom{2n+2k}{n+k} \binom{n+k}{2k}=(-4)^n\).